
How to build your
own enterprise
Kubernetes platform

From initial need, to
operational readiness

Contents
Foreword 
Executive Summary

Chapter 1 
Identifying the business need

Chapter 2 
Initial exploration and foundational learning (1–2 months)

Chapter 3 
Evaluating the CNCF and open-source ecosystem (2–3 months)

Chapter 4 
Architectural design and tooling selection (1–2 months)

Chapter 5 
Implementation and iterative configuration (4–6 months)

Chapter 6 
Stabilization, documentation, and initial production rollout (1–2 months)

Chapter 7 
Multi-cluster and centralized management (1–2 months, optional but common)

Chapter 8 
The ongoing reality of platform operations (9–15 months)

Closing Statement

Afterword 
(Trigger Warning): Simplifying Kubernetes adoption with Portainer

3
 

4
 

5 

6
 

7
 

8
 

9
 

10
 

11

12
 

13

How to build your own enterprise Kubernetes platform 2

Foreword: 
Executive Summary
Adopting Kubernetes at an enterprise scale using open-source CNCF tooling is a powerful decision,
but it's never simple or quick. Organizations rarely start down this path purely out of curiosity or
enthusiasm; more often, they're compelled into action by external vendor requirements or internal
mandates to modernize their IT operations. Whichever trigger sets your journey in motion, it's essential
to understand exactly what's ahead before you begin.

This eBook outlines the genuine, real-world journey most teams experience when implementing
Kubernetes from scratch. From the moment you first realize you need Kubernetes, through
foundational learning, detailed exploration of the CNCF ecosystem, intensive architectural decision-
making, iterative implementation, stabilization, and finally scaling to multi-cluster management; this
guide presents an honest narrative of the full lifecycle.

Each stage involves careful evaluation, detailed planning, constant iteration, frequent setbacks, and
incremental successes. It's neither linear nor tidy, but rather a journey shaped by trial and error,
learning, collaboration, and perseverance. You should expect your team to spend between 9 and 15
months moving from initial exploration to having a fully operational, production-grade Kubernetes
platform. Of course, your mileage may vary, but this is what we have seen in the field.

Through this process, you'll inevitably discover that the complexity of running Kubernetes demands a
dedicated Platform Engineering practice. The initial project transforms into an ongoing operational
commitment, involving continuous upgrades, tool replacements, and persistent fine-tuning.

While easier, integrated Kubernetes platforms exist, many organizations still deliberately choose the
path of building their own from open-source tools, valuing flexibility, control, and avoiding lock-in over
immediate convenience.

This eBook is designed to guide, prepare, and support you on your Kubernetes journey, by providing
clear expectations, realistic timelines, and honest insights. Embrace the complexity; the reward is an
enterprise-ready Kubernetes platform and a team deeply enriched by the experience.

Your Kubernetes
Journey Begins Here

How to build your own enterprise Kubernetes platform 3

It usually starts innocently enough. You probably didn't wake up thinking, “today’s a great day to
implement Kubernetes!” More likely, your phone buzzed with a message that one of your key software
vendors just announced the next release of their product would only be deployable on Kubernetes.
Suddenly the project you’d vaguely planned for next year has become urgently necessary right now.

Or maybe the push comes internally. Perhaps your CTO walked into the office one day after a board
meeting, saying your infrastructure feels outdated, too costly, or just too slow to adapt to modern
cloud-native workloads. Either way, your team now needs answers. What exactly is Kubernetes, how
complex is it, what will it take, and is it realistic for your team? Management expects quick answers, but
right now, your answers are tentative. You know enough to recognize Kubernetes as powerful but
complicated. You’re cautious about promising too much, too fast.

Before making commitments, you want your team to do some research, experiment at home, and likely
speak to a few people. You set aside some initial meetings to discuss possible impacts. Engineers
voice cautious excitement but also realistic concerns about potential skill gaps, training needs, and
infrastructure implications. Your security team immediately starts asking questions about compliance
and risks. Budget managers want to understand costs, both immediate and ongoing.

You start drafting emails to peers in other companies who've adopted Kubernetes, asking them about
their experiences. You talk to your software vendor to clarify exactly what "Kubernetes-only" means
(hoping perhaps they'll allow an extension or alternatives) but their response is clear: the direction is
set.

Quickly, it becomes apparent that Kubernetes adoption isn't something you'll simply delegate and
forget; it will become an organizational priority. You begin outlining high-level project objectives,
scheduling initial internal presentations, and reassuring your team that while it's complex, it's also an
exciting and strategic opportunity. Quietly, you start mentally preparing for the journey ahead.

How to build your own enterprise Kubernetes platform 4

Kubernetes adoption isn't something
you'll simply delegate and forget; it will

become an organizational priority.

Identifying the
business need

Chapter 1

This initial phase feels both exciting and intimidating. Your engineers dive into Kubernetes for the first
time, realizing quickly that containers are just the beginning. A small lab cluster appears on spare
hardware or virtual machines, usually set up with tools like kubeadm or Minikube. Early experiments
seem promising but often frustrating: simple tasks like deploying a web app take hours initially, as your
team learns new concepts such as pods, deployments, services, and ingress controllers.

During this foundational period, engineers enrol in introductory Kubernetes courses, often pursuing
CKAD or CKA certifications, and spend evenings diving through dense Kubernetes documentation and
blogs. It's not uncommon at this stage for someone to suggest the team try Kelsey Hightower’s
legendary "Kubernetes the Hard Way." This meticulous, step-by-step guide (while deliberately complex
and challenging) has become a rite of passage for Kubernetes enthusiasts. By manually bootstrapping
clusters without automation, your team gains a fundamental, deeply instructive understanding of
Kubernetes internals, invaluable for future troubleshooting and deeper architectural decisions.

You attend introductory webinars, join CNCF community Slack channels, and subscribe to podcasts
about Kubernetes best practices. Some team members attend local meetups or online workshops,
eager to hear directly from peers who've navigated similar journeys. Throughout this exploratory
phase, discussions naturally broaden, as the team starts to see Kubernetes adoption not just as a
technical project but as an opportunity to redefine infrastructure operations altogether.

During this exploratory phase, discussions naturally expand. The team, inspired by their research,
recommends supplementing Kubernetes adoption with Infrastructure as Code (IaC) and GitOps
practices, seeing them as "must-haves" for modern operations. Suddenly, the project’s scope expands
beyond just Kubernetes, becoming a broader modernization initiative.

By the end of this foundational period, the team has a basic grasp of Kubernetes concepts, a common
vocabulary, and a realistic understanding of the steep learning curve ahead through peer discussions
and recommendations. The excitement remains, tempered by the realization that this initial learning
stage barely scratches the surface. Engineers now begin presenting short summaries of their
discoveries to peers, outlining both promising opportunities and areas where more expertise will be
essential.

You schedule team check-ins regularly, making sure everyone remains aligned and motivated. You
start drafting initial reports back to management, carefully communicating progress, while managing
expectations about timelines and complexities. Privately, you're already preparing for the inevitable
challenges ahead, hoping your foundational work positions the team well.

Initial exploration and
foundational learning  

Chapter 2

1–2 months

How to build your own enterprise Kubernetes platform 5

By the end of this foundational period, the team
has a basic grasp of Kubernetes concepts.

Just when confidence starts to build, your engineers hit the infamous "CNCF landscape," a complex map
covered in hundreds of open-source projects. You quickly realize Kubernetes itself is only the
orchestration core. It doesn't directly provide storage, network policies, security, backups, monitoring, or
centralized logging. Now, your team must explore, evaluate, and decide on a dizzying array of solutions.

Engineers run proofs-of-concept (PoCs) for storage solutions like Rook/Ceph or Longhorn,
experimenting to see which integrates easiest with your network. The networking team wrestles with
Calico and Cilium, while infrastructure teams test OS distributions optimized for Kubernetes; Talos,
Flatcar, Bottlerocket, or Ubuntu. The complexity grows exponentially when you start trialling
authentication solutions like Dex or Keycloak, struggling to integrate them seamlessly with corporate
Active Directory or another OIDC provider.

This stage is marked by extensive trial and error. You inevitably attend industry conferences like
KubeCon or regional Kubernetes Days, absorbing as much wisdom as possible from others who’ve
experienced similar challenges. Engineers spend significant time on Stack Overflow, GitHub, CNCF
Slack, and community forums, hoping someone has encountered the same obscure networking or
storage errors they face at 1 AM. Documentation grows increasingly detailed, recording lessons learned
and justifications for tool choices.

You organize internal presentations and
workshops, allowing engineers to share what
they've learned about each evaluated tool.
Debates become lively, even passionate, as
strong opinions form around each toolset's
pros and cons. You quickly realize tool
selection isn't purely technical, factors like
community support, maintenance overhead,
and team familiarity also heavily influence
your decisions.

In this stage, the team also grapples with the
realities of combining multiple open-source
solutions. Questions about long-term
maintenance, potential security
vulnerabilities, upgrade paths, and
integration complexities constantly surface.
Gradually, confidence builds as solutions
clarify, but the complexity still feels daunting.

Typical evaluations include�

� Infrastructure automation  
(Terraform, Cluster API, Crossplane, Sidero Omni�

� Operating System  
(Talos, Flatcar, Bottlerocket, Alpine, Ubuntu�

� Kubernetes Distribution  
(RKE, K3s, EKS/AKS/GKE, K0s, OKE, Vanilla�

� Networking tools  
(Calico, Cilium, Istio, MetalLB, Kube-VIP�

� Storage  
(Rook/Ceph, Longhorn, NFS, iSCSI, CloudProvider CSI�

� Authentication  
(Dex, Keycloak, OIDC�

� Observability  
(Prometheus, Mimir, OpenTelemetary, Grafana,
VictoriaMetrics, Loki, ELK, Jaeger�

� GitOps automation  
(Flux, Argo CD, Helm, Kustomize�

� Backup and compliance tools  
(Velero, Kubescape, kube-bench)

Evaluating the CNCF and
open-source ecosystem

Chapter 3

2-3 months

How to build your own enterprise Kubernetes platform 6

After months of PoCs and evaluations, it’s finally decision time. By now, your team is deeply familiar
with dozens of tools, and everyone has a clear favourite. Engineers have spent countless hours
wrestling with trial installations, writing internal blog posts, and advocating strongly for their preferred
solutions. This stage often feels intense, filled with detailed meetings, vigorous debates, and
sometimes heated arguments as team members passionately defend their choices.

To keep the selection process structured, you schedule weekly "architecture workshops," each
dedicated to a specific topic, networking, storage, security, observability, and GitOps. During these
sessions, engineers present detailed evaluation summaries, complete with pros, cons, integration
complexities, and potential long-term implications. Sometimes these sessions feel more like courtroom
battles than collaborative discussions, but the intense dialogue is vital. You need these passionate
conversations to ensure the best possible choices emerge.

Inevitably, the complexity and detail cause decision fatigue. There comes a point where the team
agrees that all evaluated tools are reasonably capable and viable, and further analysis might yield
diminishing returns. At this stage, a balance is struck between technical ideals and practical realities,
such as community adoption, available support channels, and the team’s ability to manage tools long-
term.

Throughout this process, architects meticulously document every decision made, capturing detailed
reasoning and justification. Diagrams become increasingly comprehensive, illustrating exactly how
each selected tool integrates into the larger Kubernetes platform. Security and compliance teams
closely scrutinize each choice, demanding clear rationales and evidence for why certain tools were
chosen over others. Every decision must align clearly with your organization's broader governance
frameworks.

By the end of this architectural selection phase, you have a clear, agreed-upon blueprint.
Comprehensive implementation plans are outlined, with clear timelines, responsibilities, and
documented reasoning behind each choice. As this phase concludes, your team experiences a mix of
relief, pride, and nervous anticipation. You’re now confident in your choices, but aware that
implementation will inevitably uncover complexities your plans cannot fully predict.

Architectural design and
tooling selection

Chapter 4

1-2 months

How to build your own enterprise Kubernetes platform 7

By the end of this architectural
selection phase, you have a clear,

agreed-upon blueprint.

Implementation rarely unfolds as smoothly as architectural diagrams and planning documents suggest.
Almost immediately, your team encounters issues never observed during previous PoCs. The
networking plugins that seemed ideal suddenly conflict with storage provisioning mechanisms. RBAC
permissions, carefully crafted on paper, inadvertently restrict access to essential administrative tasks,
causing days of debugging and frustration. Authentication integrations (such as Dex or Keycloak with
OIDC) repeatedly fail during initial tests, demanding extensive troubleshooting and endless
configuration adjustments.

What follows is an intense cycle of iteration, testing, documentation, and reconfiguration. Engineers
frequently revisit community resources, re-watching conference talks from KubeCon, scouring GitHub
issue trackers, or seeking advice from CNCF community Slack channels. Sometimes your engineers
even directly reach out to tool maintainers, desperate for advice on why integrations fail in subtle yet
critical ways. Each resolution seems to lead inevitably to new challenges, creating a complex puzzle
where solutions trigger more complexity.

GitOps pipelines, initially set up with Flux or Argo CD, require multiple rebuilds and iterations before
finally working smoothly. Helm charts and Kustomize manifests, meticulously crafted and versioned,
seem to evolve daily. Monitoring and observability stacks (Prometheus, Grafana, Loki, Jaeger) demand
constant tuning, as your team iteratively adjusts alerts and dashboards to filter out noise while still
surfacing actionable insights.

Internally, you establish weekly "integration stand-ups," ensuring team alignment, managing morale,
and addressing blockers quickly. Engineers become familiar with late-night debugging sessions and
weekends spent refining configurations. Yet despite the exhaustion, there's a genuine satisfaction in
seeing the platform slowly stabilize.

Throughout this phase, documentation remains crucially important. Every iteration, failure, and
eventual success is carefully recorded, forming detailed runbooks and operational guides. By the end
of these intense months, you have a Kubernetes platform that feels robust enough (though not
perfect) to cautiously welcome initial production workloads. Your team feels simultaneously drained
and proud, aware that they've significantly deepened their collective expertise through this intense
implementation journey.

Implementation and
iterative configuration

Chapter 5

4-6 months

How to build your own enterprise Kubernetes platform 8

By the end of these intense months, you have a Kubernetes
platform that feels robust enough (though not perfect) to

cautiously welcome initial production workloads.

After months of relentless troubleshooting, configuration tweaks, and iterative improvements, your
Kubernetes platform finally achieves enough stability to cautiously deploy the first critical workloads,
likely including the vendor-mandated application that triggered this journey. This phase feels genuinely
rewarding, though it also comes with new forms of pressure. Production deployments rarely behave
exactly like staging or test environments; subtle differences in workload patterns, security rules, or
storage configurations surface immediately.

As the first applications go live, your engineers remain hyper-vigilant, ready to rapidly respond to any
issue. Predictably, minor yet urgent problems emerge, storage provisioning doesn't behave
consistently, certain network policies prove overly restrictive, or unexpected permission errors arise.
Yet your team is ready, armed with extensive documentation built over previous months. They quickly
pinpoint root causes, apply fixes, and meticulously document each incident to prevent recurrences.

During this stabilization phase, operational documentation evolves significantly. Engineers spend
considerable time writing comprehensive runbooks, troubleshooting guides, and onboarding materials,
ensuring that operational knowledge isn't siloed or limited to a few specialists. Internal training
sessions and workshops ramp up, helping broader teams (both developers and operations staff)
comfortably adopt Kubernetes workflows.

Feedback loops tighten as initial users and developers provide valuable insights. You begin refining
observability systems, improving dashboards, tweaking alert thresholds, and optimizing logging
solutions like Loki or ELK stacks based on real-world data. Backup and disaster recovery processes
(via Velero) are tested extensively, ensuring confidence in recovery capabilities should disaster strike.

By the end of this stage, confidence significantly improves. Your engineers, having successfully
handled real-world production issues, feel genuinely accomplished. Management gains clearer
visibility into the platform's readiness, becoming increasingly confident in expanding Kubernetes
deployments further across your organization.

However, despite the best intentions and repeated emphasis throughout this journey, the reality is that
the documentation you've meticulously planned and hoped to build is likely incomplete, scattered, or
only half-written. This is a common, if rarely admitted, truth about engineering: everyone recognizes
documentation's critical value, but amidst the intense pressures of implementation, debugging, and
daily firefighting, maintaining thorough documentation consistently proves far more challenging than
initially imagined. Acknowledging this openly at this stage sets the right expectations and underscores
the importance of continuously investing time and resources to close the inevitable documentation
gaps as soon as practical.

Stabilization, documentation,
and initial production rollout

Chapter 6

1-2 months

How to build your own enterprise Kubernetes platform 9

By the end of this stage,  
confidence significantly improves.

Just as your team finally achieves solid operational stability with your first Kubernetes cluster, a new
challenge inevitably arises: managing multiple Kubernetes clusters. Your journey so far focused on
building a single robust Kubernetes platform; now the focus shifts to scale, governance, and
centralized operations.

Teams quickly realize managing multiple clusters involves complexities around policy enforcement,
consistency, upgrades, and governance. You re-enter research and evaluation mode, though with far
greater expertise. Conferences like KubeCon become valuable again, this time, your questions center
specifically around multi-cluster solutions like Rancher, Open Cluster Management (OCM), Karmada, or
Cluster API.

Internal PoCs resume, this time quickly and efficiently, leveraging accumulated knowledge from
previous experiences. You evaluate centralized policy enforcement, automated cluster lifecycle
management, and consistent configuration enforcement across clusters. Integration complexity
resurfaces but feels manageable, drawing on the confidence and resilience gained from previous
phases.

Engineers once again present their findings, carefully documenting pros, cons, and recommended
solutions. The selection process feels more straightforward due to prior experiences, yet discussions
still demand careful consideration of integration complexity, long-term maintainability, and
compatibility with existing systems.

Implementation is quicker, yet still involves familiar iterative cycles; tests, troubleshooting, adjustments,
and refinement. Documentation expands further, detailing multi-cluster governance strategies,
configuration management approaches, and centralized operational workflows. Training sessions
expand to include managing and operating multiple clusters, emphasizing consistency and governance
practices.

By the end of this stage, your organization possesses a mature Kubernetes platform strategy, capable
of confidently managing multiple clusters through a centralized framework. This expanded operational
capability positions your team strongly for future growth and innovation, with robust governance
structures underpinning your organization's Kubernetes deployments.

Multi-cluster and  
centralized management

Chapter 7

1–2 months, optional but common

How to build your own enterprise Kubernetes platform 10

By the end of this stage, your organization possesses a mature
Kubernetes platform strategy, capable of confidently managing

multiple clusters through a centralized framework.

Having successfully navigated the initial adoption journey (identifying the need, exploring, evaluating,
architecting, implementing, stabilizing, and even scaling to multiple clusters) your team now transitions
from initial deployment into long-term, day-to-day operational reality. At first, you hope this phase will
feel stable, predictable, and relatively straightforward compared to the intense prior months. But you
quickly learn that operating Kubernetes platforms, especially at scale, introduces an entirely new set of
ongoing responsibilities and complexities.

Routine platform operations quickly become prominent. Regular tasks include Kubernetes version
upgrades, security patching, and tool updates for your chosen CNCF stack. Engineers learn that even
minor version updates occasionally bring unexpected challenges, as subtle changes in Kubernetes
APIs, container runtimes, or third-party tooling trigger incompatibilities and regressions. Your team
establishes clearly defined maintenance windows, carefully balancing stability with necessary
progress, performing cautious and methodical upgrades to minimize disruption.

Simultaneously, previously selected CNCF tools continue evolving rapidly, demanding continuous
attention. Projects that initially seemed ideal might lose maintainers, community support, or simply
become less suitable over time. The team regularly re-evaluates critical components, considering
replacements or migrations when tools become deprecated or no longer match organizational needs.
Lifecycling decisions demand careful analysis, often revisiting earlier PoC processes, though more
quickly and efficiently given your prior experiences.

Troubleshooting remains a constant part of platform operations. Even with robust monitoring
(Prometheus, Grafana), comprehensive logging (Loki, ELK), and distributed tracing (Jaeger,
OpenTelemetry), subtle performance issues or unexpected outages inevitably occur. Engineers grow
increasingly skilled at rapidly diagnosing problems, leveraging their extensive documentation and
internal runbooks. Incident retrospectives become routine, each incident feeding back into improved
operational processes and documentation.

Over time, the workload and complexity of managing Kubernetes clusters becomes clearly
unsustainable for engineers with broader roles or responsibilities. You realize managing this
sophisticated platform demands a dedicated team with specialized skills and a defined focus. At this
point, your organization begins establishing a dedicated Platform Engineering practice, shifting
responsibility away from generalist infrastructure teams towards specialists focused exclusively on
Kubernetes operations and continuous improvement.

The ongoing reality of
platform operations

Chapter 8

9-15 months

How to build your own enterprise Kubernetes platform 11How to build your own enterprise Kubernetes platform 11

Continued...

Platform Engineers become responsible not only for ongoing operational tasks but also for
continuously improving the developer experience. They implement self-service capabilities, refine
deployment automation, enhance observability tooling, and maintain clear communication with
development teams. Your organization quickly appreciates how Platform Engineering contributes
directly to developer productivity and operational resilience, recognizing it as a strategic function
critical to modern software delivery.

Finally, the shift towards dedicated platform engineering marks a new maturity in your Kubernetes
journey. Your platform now feels genuinely enterprise-grade, reliable, secure, scalable, and
continuously evolving. Your team, deeply enriched by experiences and accumulated expertise, stands
ready to manage the complexity that Kubernetes inevitably brings, viewing it no longer as a daunting
challenge but as a powerful, enabling platform for innovation.

How to build your own enterprise Kubernetes platform 12How to build your own enterprise Kubernetes platform

Closing Statement
This is the common journey most organizations experience when electing to adopt Kubernetes. It's
complex, demanding, and occasionally exhausting. While integrated, pre-built Kubernetes platforms
exist to significantly simplify adoption, many organizations deliberately choose the open-source path
described here. They value flexibility, control, and avoiding vendor lock-in, consciously embracing the
complexity as a worthwhile trade-off.

Your Kubernetes journey, challenging as it may be, positions your organization strongly for innovation
and sustained growth.

Welcome to your
Kubernetes future.

After navigating this detailed journey through enterprise Kubernetes adoption, you now clearly
understand the complexity, time commitment, and iterative effort involved in building a Kubernetes
platform from scratch using CNCF tooling.

At Portainer, we recognize this complexity first-hand, we see it every day. We see it because
organisations reach out to us after having gone through this process and coming unstuck. Failures
either with analysis paralysis at the start, or they lose one or more key engineers mid-stream, or at the
end of it all, the overall cost to maintain the platform ends up unpalatable to management.

While the flexibility and control gained by building your own platform can be valuable, we also
understand that many organizations simply don't have the resources, time, or internal expertise to
manage such a significant undertaking effectively.

That's precisely why Portainer exists. We built Portainer to simplify the entire Kubernetes lifecycle;
from initial deployment and configuration through daily operations and long-term management. Our
“all-in-one” toolset approach gives you a straightforward, “batteries included” platform to manage
Kubernetes, and an intuitive interface that abstracts away complexity. This allows teams of varying skill
levels to confidently deploy, manage, and scale Kubernetes clusters and applications without deep
technical expertise.

Portainer comes with integrated support for key Kubernetes functions right out of the box, including
identity management, RBAC security, observability dashboards, GitOps automation, multi-cluster
management, and a robust suite of operational tooling. This means you can dramatically shorten your
journey from "initial business need" to "fully operational, production-grade Kubernetes," typically from
months to weeks.

Importantly, Portainer doesn't lock you into proprietary technology. Instead, we leverage open
standards and embrace an open philosophy, enabling you to integrate external CNCF tooling easily,
should you wish. The result is that Portainer strikes a valuable balance between the control and
flexibility of a custom-built Kubernetes platform and the ease, speed, and simplicity your organization
needs to thrive.

AFTERWORD

(Trigger Warning):
Simplifying Kubernetes
adoption with Portainer

If the journey outlined in this eBook feels daunting or impractical,
consider Portainer your trusted partner, helping you bypass

unnecessary complexity and achieve Kubernetes success
sooner, simpler, and with complete confidence.

How to build your own enterprise Kubernetes platform 13

