Portainer.io:

Gaining Operational Maturity for
Effective Docker/Kubernetes
Implementation Lee0e,

Why Operational
Maturity Matters

Containers and Adopiing Lack of maturity tegxzcr)?gé;;hsan
Ul e BT Kubernetes is a Operational cafilead td be deeEnimtin-
transformative ’.’Iifestyle A 'S security “failure” and
but not magic choice" are you essential to breaches rollout stopped
bullets. prepared to unlock the full downtime a'nd hinderin .
make that potential. ' ring your
cholce? loss of trust. ability to
compete

Promises:

an |
N] q
vy - 7

The A"ure Of * Speed Agility Scalability Portability
Containers:
AspiratiOnS Overlooked Demands:
vs. Realit A :
y S m T @
Complexity New skills/new Operar;cieoandal Day 2 ops

Are we genuinely prepared for these demands?

D efi n i n g Structure

Operational 5 Weakness
o ’ I

IViaturity Tooling affects all

=

Processes

Self-Assessment: Where does your organization stand vs your needs?

i Challenge 1

Insufficient Platform
Engineering & DevOps Skills

The Skills Gap: Risks and
Consequences

Operational failures and Productivity losses due to
increased incidents inefficient problem-solving

HashiCorp Survey* found that

64 % of container projects are

stalled or compromised due to
skill shortages.

Competitive disadvantage
against better-prepared
organizations

https://www.hashicorp.com/state-of-the-cloud

ﬁ Challenge 2

Organizational Structure
Constraints

Shared Responsibility vs.
Clear Ownership

Shared responsibility Dedicated teams

often leads to lack of provide focused
accountability expertise and faster

resolutions

Assess and realign Be careful of engineering

roles for clarity and leaders engineering in a
efficiency vacuum.. Its very common

Y
N

@ Challenge 3

Incorrect Tooling

Tooling Gaps and
their Impact

Efficiency losses from
manual processes

Financial implications often
exceed the cost of proper
tooling

Increased risks due to
Inadequate monitoring

Don't forget your internal users
and their experiences..
Complicated tools that are
misunderstood are as bad as
no tools at all

E Challenge 4

Containerizing Legacy
Applications

The Risks of Containerizing

Legacy Apps

Potential performance issues
affect user experience

Consider re-architecting or
replacing instead

Quick fixes increase
technical debt

Not all apps are worth
containerizing—choose
wisely

The Cost of Low
Operational Maturity

Frequent Application or Platform Outages
Extended outages when they occur
Outages blamed on “the technology”

Fear to perform (required) platform/system upgrades
due to the unknown impact of such

Security vulnerabilities, or an unknown security
posture across the platform

Unpredictable application performance

Engineers spending considerable time learning vs
doing

Engineers spending a large proportion of their time
fixing unexpected issues vs running the system

Projects taking substantially longer than expected to
Implement

Technical understanding inaccuracies such as
“namespaces give network/security isolation between
apps” - they dont!

Monitoring tools costs spiraling due to poorly
optimized logging/monitoring tooling capturing “noise”

Container/Host “Sprawl!” to unconstrained access to
resources, leading to cost blowouts

Engineers forever wanting to automate everything
before the platform is ready

Disengagement between Devs and Ops
No centralized management of decentralized platforms

No central visibility into the security / governance of
the environment

We’re leaving Kubernetes

Kubernetes seems like the obvious choice for building out remote, standardized
and automated development environments. We thought so too and have spent
six years invested in making the most popular cloud development environment
platform at internet scale. That’s 1.5 million users, where we regularly see
thousands of development environments per day. In that time, we’ve found that
Kubernetes is not the right choice for building development environments.

This is our journey of experiments, failures and dead-ends building development
environments on Kubernetes. Over the years, we experimented with many ideas
involving SSDs, PVCs, eBPF, seccomp notify, TC and io_uring, shiftfs, FUSE and
idmapped mounts, ranging from microVMs, kubevirt to vCluster.

In pursuit of the most optimal infrastructure to balance security, performance and
interoperability. All while wrestling with the unique challenges of building a
system to scale up, remain secure as it’s handling arbitrary code execution, and
be stable enough for developers to work in.

This is not a story of whether or not to use Kubernetes for production
workloads that’s a whole separate conversation. As is the topic of how to build a
comprehensive soup-to-nuts developer experience for shipping applications on
Kubernetes.

This is the story of how (not) to build development environments in the cloud.

And the outcome...

| Didn't Need Kubernetes, and
You Probably Don't Either

By Ben Houston, 2024-11-05

(This blog post was discussed on YCombinator's Hacker News here. A

response from Romaric Philogene to this essay (s also here)

Kubernetes often represents the ultimate solution for container
orchestration, but my experience has led me to leave it behind in

favor of a simpler, cost-effective solution using Google Cloud Run.

This transition has made my infrastructure projects easier to manage,

more scalable, and significantly cheaper. Here's why | made this
choice and how Cloud Run offers a better fit for my needs going

forward.

How | ended up on Kubernetes

First, let's quickly look at how we ended up on Kubernetes. We has
launched Clara.io (now sunset), an online 3D editor and rendering
platform, in 2013. We cost optimized the platform by using bare
metal machines from OVH for both its primary servers, DBs and job
workers. While it worked, bare metal machines were a source of
potential failures and we did have some over the years. Luckily we
had a redundant setup so our users never noticed. But it was a

massive amount of work to provision, monitor and maintain.

| Stopped Using Kubernetes. Our
DevOps Team Is Happier Than Ever

Why Letting Go of Kubernetes Worked for Us

Loz

- Crafting-Code - Follow
W blished in Stackademic - 10 minread - Nov 19, 2024

5 :- L]] Ih | |
airaard oum b R, el (e ke r sl | e Lrrbadd e Cmdam o

Orwwl=dgr Te Nogmalrea e bes Fulae
Chraryses” sawed ol e s alr Tadie e
P Perwm b s adromea ¥ gt Lo Tt T U
I ST “rarr o Jpuplaaree
hbawed [ran aral Fesalrieeral Lyl hers rier g e iEler Hewde F b Hdab ———
- -
Ik ard 1 e E o irniipe et Ear fpul 1o wer.
L - L
Bprar) wa Pt iy 1T bboropmring ol

“rpgepsnd 1 Dpsrp o T e el ok e

1 bedg by =g Loanearg

1 - Ty fagg
Q ol {$
A tool to evaluate Covers skills, ldentifies gaps and Empowers your

your organization's structure, tooling, provides a roadmap organization by
readiness and processes for improvement understanding where you

stand

Embrace Operational
Maturity

1 Complete the self-assessment to gain critical insights

2 Use findings to prioritize actions and investments

3 Operational maturity is essential for sustained success

4 Don't let assumptions hinder progress—take action today

l.I
|:|.1:- - |:||.

= LT

Assessment Download Link

o
D
3

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

