
Portainer.io:
Gaining Operational Maturity for
Effective Docker/Kubernetes
Implementation

Neil Cresswell, CEO, Portainer.io

Why Operational
Maturity Matters

Containers and
Kubernetes are
transformative
but not magic

bullets.

Adopting
Kubernetes is a

“lifestyle
choice” are you

prepared to
make that
choice?

Operational
maturity is
essential to

unlock the full
potential.

Lack of maturity
can lead to

security
breaches,

downtime, and
loss of trust.

Worse, the
technology can
be deemed a
“failure” and

rollout stopped,
hindering your

ability to
compete

The Allure of
Containers:
Aspirations
vs. Reality

Are we genuinely prepared for these demands?

Promises:

Overlooked Demands:

Speed Agility Scalability Portability

Complexity Operational
overhead

Day 2 opsNew skills/new
hires

Defining
Operational
Maturity

Self-Assessment: Where does your organization stand vs your needs?

Skills

Structure

Tooling

Processes

Weakness
in one
affects all.

Insufficient Platform
Engineering & DevOps Skills

Challenge 1

Containers are VERY
different from VMs. As a

result, they require
specialized skills beyond

traditional IT

Assuming existing
teams can manage
without upskilling is

risky

Consequences include
misconfigurations,

security compromises,
and operational failures

The Skills Gap: Risks and
Consequences

Operational failures and
increased incidents

Competitive disadvantage
against better-prepared

organizations

Productivity losses due to
inefficient problem-solving

HashiCorp Survey* found that
64% of container projects are
stalled or compromised due to

skill shortages.

https://www.hashicorp.com/state-of-the-cloud

Organizational Structure
Constraints

Challenge 2

Fragmented
responsibilities blur

accountability

Siloed departments
hinder communication

and efficiency

Unclear ownership
leads to decision-

making bottlenecks

Shared Responsibility vs.
Clear Ownership

Shared responsibility
often leads to lack of

accountability

Assess and realign
roles for clarity and

efficiency

Dedicated teams
provide focused

expertise and faster
resolutions

Be careful of engineering
leaders engineering in a

vacuum.. Its very common

Incorrect Tooling

Challenge 3

Effective
container

management
requires

specialized tools

Relying on legacy
tools can hinder

operations

Equally, adoption of
disparate tools lead to

integration
challenges. The

CNCF landscape is a
mess of over 2000

disparate tools..
Which do you need?

Are your tools
empowering your

team or holding them
back? From who’s

perspective?

Tooling Gaps and
their Impact

Efficiency losses from
manual processes

Financial implications often
exceed the cost of proper

tooling

Increased risks due to
inadequate monitoring

Don’t forget your internal users
and their experiences..

Complicated tools that are
misunderstood are as bad as

no tools at all

Containerizing Legacy
Applications

Challenge 4

Legacy apps often
aren't suited for

containers without
modification

Complex
dependencies

can cause
unexpected

issues

Migrating legacy
apps to containers is

valuable, however
be prepared for the
time investment to

do so

Maybe consider
lower criticality
apps first, to cut

your teeth

The Risks of Containerizing
Legacy Apps

Potential performance issues
affect user experience

Consider re-architecting or
replacing instead

Quick fixes increase
technical debt

Not all apps are worth
containerizing—choose

wisely

The Cost of Low
Operational Maturity
• Frequent Application or Platform Outages

• Extended outages when they occur

• Outages blamed on “the technology”

• Fear to perform (required) platform/system upgrades
due to the unknown impact of such

• Security vulnerabilities, or an unknown security
posture across the platform

• Unpredictable application performance

• Engineers spending considerable time learning vs
doing

• Engineers spending a large proportion of their time
fixing unexpected issues vs running the system

• Projects taking substantially longer than expected to
implement

• Technical understanding inaccuracies such as
“namespaces give network/security isolation between
apps” - they dont!

• Monitoring tools costs spiraling due to poorly
optimized logging/monitoring tooling capturing “noise”

• Container/Host “Sprawl” to unconstrained access to
resources, leading to cost blowouts

• Engineers forever wanting to automate everything
before the platform is ready

• Disengagement between Devs and Ops

• No centralized management of decentralized platforms

• No central visibility into the security / governance of
the environment

And the outcome…

Introducing the
Operational
Maturity Self-
Assessment

A tool to evaluate
your organization's

readiness

Covers skills,
structure, tooling,

and processes

Identifies gaps and
provides a roadmap

for improvement

Empowers your
organization by

understanding where you
stand

Embrace Operational
Maturity

Complete the self-assessment to gain critical insights

Use findings to prioritize actions and investments

Operational maturity is essential for sustained success

Don't let assumptions hinder progress—take action today

1
2
3
4

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

