
Containerization Operational Maturity
Self-Assessment

© Portainer 2024 - All Rights Reserved

How to use this guide..

Using the bullet point lists, determine your current level of maturity for each section,
based on your ability to answer “yes” to the bullets stated.. If you cannot answer Yes
to all bullets in a section, then you have not reached that level of maturity. Remove a
tick or cross when determining.

Map the green ticks onto the matrix as green squares so you can visually see maturity level.

1

2

Then define your required level of maturity based on your business need. Map this onto
the maturity matrix as a horizontal line at the top of the maturity level you need.3

You can now see the gaps you need to address (in inversely where you are over investing)4

© Portainer 2024 - All Rights Reserved

The Maturity Matrix

Maturity Level
Personal

Readiness
Organizational Readiness

Application
Readiness

Technology
Readiness

Advanced

Capable

Emerging

Opportunistic

Ad-Hoc /
Experimentation

Traditional

Understanding the Maturity Model – Indicators of maturity

VM-Centric, no exposure to Containers

Select few individuals beginning to learn, no official company-wide investment into tooling
or supporting org structures

Initial Deployment of Containers for Business purposes, person that deploys them, supports
them, limited “bespoke” tooling deployed

Containers now accepted as a deployment choice for non-core applications, support is
widened to the team that deploys them, supports them. Basic tooling deployed

Containers are the deployment method for applications that form critical elements of the
business, specialist team responsible for SLAs, and deep tooling deployed

Container adoption now mainstream for business apps, central team responsible for
supporting the platform, end to end tooling deployed.

© Portainer 2024 - All Rights Reserved

Maturity Level
Personal

Readiness
Organizational Readiness

Application
Readiness

Technology
Readiness

Advanced
Advanced Kubernetes

Knowledge
SRE Team

Container Native 12 Factor
Applications

Advanced Container Service
Platform

Capable
Basic Kubernetes

Knowledge
Platform Engineering

Container Native
Three-Tier Applications

“Containers as a Service”
Platform

Emerging
Advanced Docker

Knowledge
DevOps Adoption

Containerizable Modern Three-
Tier Applications

Centralized Container
Operations Platform

Opportunistic Basic Docker Knowledge
“Champion” based initial

adoption of
Containerization

Containerizable Traditional
“LAMP”

Three-Tier Applications
Discrete Container Operations

Ad-Hoc /
Experimentation

Advanced Linux and
Infrastructure Knowledge

Traditional Platform
Support Team

Containerizable Monolith
Applications

Container Experimentation

Traditional
Basic Linux
Knowledge

Traditional IT Operations Traditional Installable Software
Traditional IT Monitoring and

Alerting Tooling

Understanding the Maturity Model

© Portainer 2024 - All Rights Reserved

Maturity Level
Personal

Readiness
Organizational Readiness

Application
Readiness

Technology
Readiness

Advanced
Advanced Kubernetes

Knowledge
SRE Team

Container Native 12 Factor
Applications

Advanced Container Service
Platform

Capable
Basic Kubernetes

Knowledge
Platform Engineering

Container Native
Three-Tier Applications

“Containers as a Service”
Platform

Emerging
Advanced Docker

Knowledge
DevOps Adoption

Containerizable Modern Three-
Tier Applications

Centralized Container
Operations Platform

Opportunistic Basic Docker Knowledge
“Champion” based initial

adoption of
Containerization

Containerizable Traditional
“LAMP”

Three-Tier Applications
Discrete Container Operations

Ad-Hoc /
Experimentation

Advanced Linux and
Infrastructure Knowledge

Traditional Platform
Support Team

Containerizable Monolith
Applications

Container Experimentation

Traditional
Basic Linux
Knowledge

Traditional IT Operations Traditional Installable Software
Traditional IT Monitoring and

Alerting Tooling

Example – The Model, with current maturity mapped

© Portainer 2024 - All Rights Reserved

Maturity Level
Personal

Readiness
Organizational Readiness

Application
Readiness

Technology
Readiness

Advanced
Advanced Kubernetes

Knowledge
SRE Team

Container Native 12 Factor
Applications

Advanced Container Service
Platform

Capable
Basic Kubernetes

Knowledge
Platform Engineering

Container Native
Three-Tier Applications

“Containers as a Service”
Platform

Emerging
Advanced Docker

Knowledge
DevOps Adoption

Containerizable Modern Three-
Tier Applications

Centralized Container
Operations Platform

Opportunistic Basic Docker Knowledge
“Champion” based initial

adoption of
Containerization

Containerizable Traditional
“LAMP”

Three-Tier Applications
Discrete Container Operations

Ad-Hoc /
Experimentation

Advanced Linux and
Infrastructure Knowledge

Traditional Platform
Support Team

Containerizable Monolith
Applications

Container Experimentation

Traditional
Basic Linux
Knowledge

Traditional IT Operations Traditional Installable Software
Traditional IT Monitoring and

Alerting Tooling

Example – The Model, with desired maturity mapped

© Portainer 2024 - All Rights Reserved

Maturity Level
Personal

Readiness
Organizational Readiness

Application
Readiness

Technology
Readiness

Advanced
Advanced Kubernetes

Knowledge
SRE Team

Container Native 12 Factor
Applications

Advanced Container Service
Platform

Capable
Basic Kubernetes

Knowledge
Platform Engineering

Container Native
Three-Tier Applications

“Containers as a Service”
Platform

Emerging
Advanced Docker

Knowledge
DevOps Adoption

Containerizable Modern Three-
Tier Applications

Centralized Container
Operations Platform

Opportunistic Basic Docker Knowledge
“Champion” based initial

adoption of
Containerization

Containerizable Traditional
“LAMP”

Three-Tier Applications
Discrete Container Operations

Ad-Hoc /
Experimentation

Advanced Linux and
Infrastructure Knowledge

Traditional Platform
Support Team

Containerizable Monolith
Applications

Container Experimentation

Traditional
Basic Linux
Knowledge

Traditional IT Operations Traditional Installable Software
Traditional IT Monitoring and

Alerting Tooling

Example – The Model, with gaps identified

© Portainer 2024 - All Rights Reserved

Maturity Level
Personal

Readiness
Organizational Readiness

Application
Readiness

Technology
Readiness

Advanced
Advanced Kubernetes

Knowledge
SRE Team

Container Native 12 Factor
Applications

Advanced Container Service
Platform

Capable
Basic Kubernetes

Knowledge
Platform Engineering

Container Native
Three-Tier Applications

“Containers as a Service”
Platform

Emerging
Advanced Docker

Knowledge
DevOps Adoption

Containerizable Modern Three-
Tier Applications

Centralized Container
Operations Platform

Opportunistic Basic Docker Knowledge
“Champion” based initial

adoption of
Containerization

Containerizable Traditional
“LAMP”

Three-Tier Applications
Discrete Container Operations

Ad-Hoc /
Experimentation

Advanced Linux and
Infrastructure Knowledge

Traditional Platform
Support Team

Containerizable Monolith
Applications

Container Experimentation

Traditional
Basic Linux
Knowledge

Traditional IT Operations Traditional Installable Software
Traditional IT Monitoring and

Alerting Tooling

Example – The Model, showing over investment in advance of needs

© Portainer 2024 - All Rights Reserved

Personal Readiness

How to scorecard “Personal Readiness”

In the detailed list that follows, you need to scorecard the technical understanding
of Linux, infrastructure, containerization, and its surrounding tooling, that your
team currently possess.

The goal is to understand what their basis level of knowledge is, and how it can be
mapped to organization needs, and where training may be required.

Note that the knowledge needs to be both theoretical and applied.

© Portainer 2024 - All Rights Reserved

Personal Readiness (Map for those responsible for managing the container platforms) Present?

Advanced Kubernetes Knowledge:
• Architectural understanding of Kubernetes: control-plane, workers, API server, kubelet, networking, storage, deployments, service discovery, clustering, security, monitoring.
• Deep understanding of the technicalities of Kubernetes Container Orchestration
• Kubernetes Extensibility: CNI, CSI, ServiceMesh, Operators, Admission Controllers, Policy Engines
• Ability to write comprehensive Kubernetes RBAC Roles and Cluster Roles
• Secret and Configuration Management
• Knowledge of Autoscaling (Pod and Cluster) and how to set per-namespace resource allocations (Quotas)
• Extensive knowledge of the full array of Kubernetes CLI Commands: deployment, troubleshooting, lifecycle
• How to write Advanced Kubernetes Manifests and HELM charts
• Deep understanding of GitOps and Policies

Basic Kubernetes Knowledge:
• Conceptual understand of Kubernetes Orchestration
• Kubernetes constructs: deployments, pods, containers, services
• Resource overhead of running Kubernetes
• Kubernetes Cluster build using “bootstrap” tooling
• Kubernetes Cluster lifecycle using “bootstrap” tooling
• Kubernetes CLI, basic understanding (top 10 commands)

Advanced Docker Knowledge:
• Distributed Micro-Services, and the architectural impacts (performance, troubleshooting)
• Simple Container Orchestration (Docker Swarm, or Simple Kubernetes)
• Maintaining Data Persistence across Nodes
• Cross-Node Networking (Overlay Networking, Tunnelling)
• Reverse Proxies (Ingress Controllers)
• DNS (Service Discovery)

Basic Docker Knowledge:
• Architecture of a container and how a container runtime works
• Differences between Stateless vs Stateful Containers; understand how to persist data, and what happens if you don’t.
• Differences between VMs and Containers
• How Docker Volumes Work, and differences from bind mounts
• How to write Docker Compose files and use Compose to start and stop groups of containers that comprise an application stack
• Docker Images composition, how these are built and distributed

Advanced Linux and Infrastructure Knowledge:
• Data storage methodologies, NFS/CIFS, Block Storage, and the difference between each, understanding of RWO/RWX file systems.
• Understanding of Networking concepts, NAT, VLAN, Overlay Networking (VXLAN, Encapsulation/Tunnelling)

Basic Linux Knowledge:
• SSH Server Configuration (with SSH keys)
• Installing components / apps using Apt
• SSL/TLS
• Iptables / IPFW
• Standard Linux commands

© Portainer 2024 - All Rights Reserved

Organizational Readiness

How to scorecard “Organizational Readiness”

In the detailed list that follows, you need to scorecard your IT organizational
structure against the known models for supporting Containerized platforms.

Note that simply calling your team “platform engineering” doesn’t mean they
operate that way (as an example). You need to look at the indicators/ways of
working to validate the team structure you have in place accurately matches the
maturity levels indicated.

Also note that you may run a combination of DevOps, Platform Engineering, and
Site Reliability Engineering, as the more advanced levels of maturity compliment
(but can also replace) lower levels.

SRE engineering is a very advanced level of engineering maturity, normally
reserved for mission critical deployments, and almost exclusively the realm of
senior engineering folk.

© Portainer 2024 - All Rights Reserved

Organizational Readiness (Answering depending on the IT Operational support structure you have for Containers) Present?

SRE
• Dedicated full-stack engineering team
• Focussed exclusively on preventative engineering, spanning development through platforms, with a focus on ensuring uptime/resilience, automation, and incremental

improvements.
• Proactive monitoring and remediation

Platform Engineering:
• Transition from DevOps model to Platform Engineering
• Realization that the Container platforms are business critical
• Central Policy/Control/Security/Operations
• Dev Self Service Platform / Devs “are the customer”

DevOps Adoption:
• “You Build it, you support it” approach to the adoption of Containerization by the Dev team.
• No Centralized management of Containerization
• Discrete pockets of skills
• High Risk due to Dev Team lack of exposure to Infrastructure fundamentals
• Containerization underpins certain discrete production services

“Champion” based initial adoption of Containerization:
• Single Developer or Lead Adopting Containers in their workflow
• “Accidental” transition to a production service
• Insufficient operational controls/visibly
• Historically known as “Shadow IT”; Adoption of the technology by an individual/team due to central IT reluctance to officially support

Traditional Platform Support Team:
• Central Platform Team responsible for common platform components (Cloud, Virtualization, DB’s, Web Services, API Gateways)
• Offer IT as a Service from a Service Catalogue
• Simple Self-Service offerings (auto-provisioning)
• No exposure to Containerization in this team

Traditional IT Operations:
• Infrastructure Support Team,
• Application Support Team,
• Development Team (if software developed internally),
• “Ticket” based service delivery

© Portainer 2024 - All Rights Reserved

Application Readiness

How to scorecard “Application Readiness”

In the detailed list that follows, you need to scorecard the application portfolio that
you plan to migrate to containerization. Not every application can run in
containers, and for “purchased” software, you need to be sure your vendor
supports container platforms.

If you do not produce your own software (no internal developers), then scorecard
against your ISV provided software through questioning your vendors.

If you do develop your own software, your development team will be able to share
insights on the potential/supportability to migrate to containers.

© Portainer 2024 - All Rights Reserved

Application Readiness (Map based on the applications you want to deploy/migrate) Present?

Container Native 12 Factor Applications
• Horizontally Scalable
• Micro-Service Architecture
• Stateless

Container Native three-Tier Applications:
• ISV provided container images and deployment manifests
• Internal Developer provided container images and deployment manifests

Containerizable, Modern Three-Tier Applications:
• Self-Developed three tier (Web/Middleware/DB) applications that can be separated into an application stack that run distributed across

disparate servers with no impact to application performance
• COTS software that can be repackaged to run within discrete containers distributed across a cluster of physical servers

Containerizable Traditional “LAMP” Three-Tier Applications:
• Self-Developed three tier (Web/Middleware/DB) applications that can be separated into an application stack that run on a single physical server
• COTS software that can be repackaged to run within discrete containers on a single physical server

Containerizable Monolith Applications:
• Self-Developed Applications based off common frameworks / components with ready-available container image bases
• COTS software that can be repackaged to run within a container

Traditional Installable Software
• Purchased Software provided by a Software Vendor
• Self-Developed, complied with an installer
• Windows UI centric Applications

© Portainer 2024 - All Rights Reserved

Technology Readiness

How to scorecard “Technology Readiness”

In the detailed list that follows, you need to scorecard your Container and tooling
deployment against the Container Management Platform* standard. As your
adoption of containerized applications increases, it is critical to have the platform
tooling to adequately support it.

Tooling can either be discrete tools, or a consolidated platform tool, but regardless,
you need the capabilities listed in the following.

© Portainer 2024 - All Rights Reserved

* See Gartner Description of Container Management Reference Architecture

Technology Readiness (Map based on the level of Platform Build you are considering or have already deployed) Present?

Advanced Container Service Platform
• Service Mesh
• Geo-Distributed Applications
• Advanced Observability, Security, and Compliance Tooling

“Containers as a Service” Platform
• 100% Self-Service Developer Portal
• Golden Path’s
• Multi-Cluster/Multi-Cloud/Hybrid-Cloud
• Rapid Lifecycling of Clusters
• Infrastructure as Code
• GitOps as the preferred deployment Model
• Full Observability Suite; Realtime and historical monitoring for a full array of metrics

Centralized Container Operations Platform:
• Migration from discrete deployments to central deployment
• Migration of Operations from Dev to a Platform Engineering team
• Centralized Access/Authorization/Policy/Security
• Single Deployment Model (cloud, On-prem)
• Often a very small number of shared environments (likely one, sometimes more)
• Clusters as “Cattle”
• GitOps and ClickOps combined
• Basic Observability; real-time monitoring for a limited range of metrics

Discrete Container Operations:
• “Developer Lead” deployment of Containerization in production – cloud based primarily
• Discrete per-project deployments, not a common/shared platform
• Bootstrap tools to create environment; k3s, RKE, AKS/GKE/EKS centric deployments
• No central management and control
• Environments as “pets”
• “ClickOps” / UI Centric Management

Container Experimentation
• Dev Environments / Dev Laptops
• Docker Desktop/Podman Desktop/MiniKube
• Non-Critical Deployment
• Distributed, no central control
• Discrete Monitoring Tools
• CLI / UI Centric Management

Traditional IT Monitoring and Alerting Tooling
• VM Monitoring
• Application Performance Monitoring
• Service Availability Monitoring
• Threshold based alerting
• SYSLOG servers

© Portainer 2024 - All Rights Reserved

Determine your required level
of maturity

How to scorecard “Required Maturity”

In order to determine how you should invest in your containerization build-out,
you first need to understand what your goals/aspirations are. If you are not looking
to leverage containers for any serious business functionality then your required
level of maturity will be significantly lower than if your business 100% depends on
container-based applications.

You should scorecard based on your short term and longer-term aspirations, as you
need to be aware that maturity changes over time.

Be careful of setting too high a maturity level too soon, as this may lead to over-
investment far in advance of needs, which leads to a negative ROI / high TCO.

© Portainer 2024 - All Rights Reserved

Required
Maturity Level

Business Use of Containers / Why are you adopting Containers

Advanced
Mission critical use, vast majority of applications will be (or are) running in containers. Absolute requirement for “five
9’s” of availability.

Capable Multiple business critical applications will be (or are) deployed in containers. Need to deliver high levels of SLA.

Emerging
Multiple business important applications will be (or are) deployed in containers. Customer facing, or business internal
services.

Opportunistic
One or more non-critical applications will be (or are already) deployed as containers to validate the value and
operational impact

Ad-Hoc / Experimentation Early experimentation into the business value of containers. No customer or internal facing apps. Trial use.

Traditional Beginning to think about Containerization, no current adoption

© Portainer 2024 - All Rights Reserved

Maturity Level
Personal

Readiness
Organizational Readiness

Application
Readiness

Technology
Rediness

Advanced
Advanced Kubernetes

Knowledge
SRE Team

Container Native 12 Factor
Applications

Advanced Container Service
Platform

Capable
Basic Kubernetes

Knowledge
Platform Engineering

Container Native
Three-Tier Applications

“Containers as a Service”
Platform

Emerging
Advanced Docker

Knowledge
DevOps Adoption

Containerizable Modern Three-
Tier Applications

Centralized Container
Operations Platform

Opportunistic Basic Docker Knowledge
“Champion” based initial

adoption of
Containerization

Containerizable Traditional
“LAMP”

Three-Tier Applications
Discrete Container Operations

Ad-Hoc /
Experimentation

Advanced Linux and
Infrastructure Knowledge

Traditional Platform
Support Team

Containerizable Monolith
Applications

Container Experimentation

Traditional
Basic Linux
Knowledge

Traditional IT Operations Traditional Installable Software
Traditional IT Monitoring and

Alerting Tooling

© Portainer 2024 - All Rights Reserved

How can Portainer help me?

Portainer is a Container Management platform that helps you achieve
higher levels of operational maturity at a significantly lower costs / faster
time than other methods.

Portainer removes operational complexity, allowing you to operate with
one or two levels of personal readiness lower than you would be able to
without Portainer.

Portainer is an end-to-end container management platform tool, and so a
deployment of Portainer in your environment immediately propels you
to “capable” level in technology readiness. This is a very fast/efficient
way of obtained technical maturity.

© Portainer 2024 - All Rights Reserved

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

